Solution - Design Example V7a - EC6 Double Curvature Strut model

Slenderness ratio:

Effective thickness of inner leaf, \(t_{ef} = \sqrt[3]{t_1^3 + t_2^3} \)

\[= t_{ef} = 3\sqrt{(100^3 + 100^3)} = 126 \text{ mm} \]

Effective height \(h_{ef} = \frac{2500}{126} = 19.84 \)

Eccentricity of wall head roof loading \(= t/6 \)

Hence eccentricity of design vertical load, \(e_i = (M_{id} / N_{id}) + e_{he} \pm e_{init} \geq 0.05t \)

Therefore \(e_i = 16.67 + 0 + 5.56 = 22.23 \text{ mm} \) (i.e. 0.222t)

where \(M_{id}/N_{id} = 16.67 \text{ mm} \)

\(e_{he} = 0 \) (horizontal loads effect)

\(e_{init} = h_{ef}/450 = (2500 \times 1.00) / 450 = 5.56 \text{ mm} \)

\(e_i \) is 0.222 t at top and bottom of the wall for EC6 strut in double curvature

Therefore \(\phi_i = 1 - 2(e_i / t) = 1 - 2(0.222t / t) = 0.56 \)

And eccentricity of design vertical load, \(e_m = (M_{md} / N_{md}) + e_{hm} \pm e_{init} \geq 0.05t \)

Therefore \(e_{mk} = e_m + e_k = 0 + 0 + 5.56 = 5.56 \text{ mm} \) (i.e 0.056t)

where \(M_{md}/N_{md} = 0 \) (point of contraflexure of double curvature strut)

\(e_{hm} = 0 \) (horizontal loads effect)

\(e_{init} = h_{ef}/450 = (2500 \times 1,0) / 450 = 5.56 \text{ mm} \)

\(e_k = 0 \) (creep effect)

\(e_{mk} \) is 0.056t at mid-height of the wall for EC6 strut in double curvature

Hence for \(E = 1000f_{kt} \) Part 1.1 Annex G equations or Figure G1 gives:

©John Roberts
\(\Phi_m = 0,62 \) Therefore 0,56 governs design

\[f_k = Kf_k^\alpha f_m^\beta = 0,55 \times 4,0^{0.7} \times 4,0^{0.3} = 2,20 \text{ N/mm}^2 \]

Design resistance per unit length \(N_{Rd} = \Phi_{\text{min}} t f_d \)

Where design strength, \(f_d = \frac{f_k}{\gamma_m} \) and \(\gamma_m = 2,7 \) from UK National Annex

\[N_{Rd} = 0,56 \times 100 \times 2,20 / 2,7 = 45,6 \text{ kN/m run} \]

Wall will carry a design vertical load of 45,6 kN/m run under the conditions given using the EC6 double curvature strut model
Solution - Design Example V7b - BS 5628 Part 1 Strut model

Slenderness ratio:

\[\frac{h_{ef}}{t_{ef}} = \frac{2500}{126} = 19.84 \quad \text{as V7a} \]

Eccentricity of wallhead floor loading = \(t/6 \)

Hence eccentricity of design vertical load, \(e_i = (M_{id} / N_{id}) + e_{he} \pm e_{init} \geq 0.05t \)

Therefore \(e_i = 16.67 + 0 + 5.56 = 22.23 \text{ mm} \) (i.e. \(0.222t \))

where \(M_{id}/N_{id} = 16.67 \text{ mm} \)

\[e_{he} = 0 \quad (\text{horizontal loads effect}) \]

\[e_{init} = \frac{h_{ef}}{450} = \frac{(2500 \times 1.00)}{450} = 5.56 \text{ mm} \]

\(e_i \) is \(0.222t \) at top of the wall for BS 5628 strut model using EC6 Part 1.1

Therefore \(\phi_i = 1 - 2(e_i / t) = 1 - 2(0.222t / t) = 0.56 \) as 7a

Using BS 5628 strut model mid-height eccentricity, \(e_{mk} = e_m + e_k \)

\[= 0.6e_i + e_{hm} \pm e_{init} + e_k \]

Therefore \(e_{mk} = (0.6 \times 16.67 \text{ mm}) + 0 + 5.56 + 0 \text{ mm} = 15.56 \text{ mm} \) (i.e. \(0.156t \))

where \(e_{hm} = 0 \quad (\text{horizontal loads effect}) \)

\[e_{init} = \frac{h_{ef}}{450} = \frac{(2500 \times 1.0)}{450} = 5.56 \text{ mm} \]

\[e_k = 0 \quad (\text{creep effect}) \]

\(e_{mk} \) is \(0.156t \) at mid-height of the wall for BS 5628 strut model

Hence for \(E = 1000f_k \) Part 1.1 Annex G equations or Figure G1 gives:

\[\Phi_m = 0.40 \quad \text{governs design} \]

\[f_k = Kf_m \phi_k = 0.55 \times 4.0^{0.7} \times 4.0^{0.3} = 2.20 \text{ N/mm}^2 \]

Design resistance per unit length \(N_{Rd} = \Phi_{min} t f_d \)

©John Roberts
Where design strength, \(f_d = \frac{f_k}{\gamma_m} \) and \(\gamma_m = 2.7 \) from UK National Annex

\[
N_{Rd} = 0.40 \times 100 \times 2.20 / 2.7 = 32.9 \text{ kN/m run}
\]

Wall will carry a design vertical load of 32.9 kN/m run under the conditions given using EC6 Part 1.1 but with the BS 5628 Part 1 strut model applied

Comment: It can be seen that the double curvature strut model as used in EC6 Part 1.1 gives more favourable vertical design load capacities than using a BS 5628 Part 1 strut model with the resultant load concentric at the base of the loaded wall. For walls with significant rotational top restraint, such as those supporting heavy concrete floors or roofs, the model appears reliable. For single storey walls with light timber floors or roofs or where rotational restraint from floors and roofs is not so substantive the designer may wish to consider the modified BS 5628 strut model in determining vertical design load capacity.