Solution - Design Example V3

Slenderness ratio:

Effective thickness of inner leaf,
$$t_{ef} = t_{ef} = \sqrt[3]{t_1^3 + t_2^3}$$

$$= t_{ef} = \sqrt[3]{(102,5^3 + 140^3)} = 156 \text{ mm}$$
 Effective height = 0,75 x 3000 = 2250 mm
$$\frac{h_{ef}}{t_{ef}} = \frac{2250}{156} = 14,4$$

Eccentricity of 1st floor loading, (10 kN/m) = t/6

Hence eccentricity of design vertical load, $e_i = (M_{id} / N_{id}) + e_{he} \pm e_{init} \ge 0.05t$

Therefore
$$e_i = 1.8 + 0 + 5.0 = 6.8 \text{ mm}$$
 (i.e. 0.049t)

where
$$M_{id}/N_{id} = (10 \text{ x } 140) / (130 \text{ x } 6) = 1,80 \text{ mm}$$

 $e_{he} = 0 \text{ (horizontal loads effect)}$
 $e_{init} = h_{ef}/450 = (3000 \text{ x } 0,75) / 450 = 5,0 \text{ mm}$

 $e_{\rm i}$ is 0,05 t at top and bottom of the wall which are the minimum eccentricity design values to be used

Therefore
$$\phi_i = 1 - 2(e_i / t) = 1 - 2(0,05t / t) = 0,9$$

And eccentricity of design vertical load, $e_m = (M_{md} / N_{md}) + e_{hm} \pm e_{init} \ge 0,05t$

Therefore
$$e_{mk} = e_m + e_k = 0 + 0 + 5,0 = 5,0 \text{ mm}$$
 (i.e. 0,036t)

where $M_{md}/N_{md} = 0$ (point of contraflexure of double curvature strut)

 $e_{hm} = 0$ (horizontal loads effect)

$$e_{init} = h_{ef}/450 = (3000 \times 0.75) / 450 = 5.0 \text{ mm}$$

$$e_k = 0$$
 (creep effect)

 e_{mk} is 0,05 t at mid-height of the wall which is the minimum eccentricity design value to be used

Hence for $E = 1000f_k$ Part 1.1 Annex G equations or Figure G1 gives:

©John Roberts 2020

$$\Phi_{\rm m} = 0.76$$

Design resistance per unit length $N_{Rd} = \Phi_{min} t f_d$

Where design strength, $f_d = \frac{f_k}{\gamma_m}$

 $N_{Rd} = 0.76 \times 140 \times f_k / 2.3 = 130 \text{ kN/m run}$

Hence f_k required = 2,81 N/mm²

$$f_k = K f_b^{\alpha} f_m^{\beta}$$

Therefore $2.81 = 0.75 \text{ x fb}^{0.7} \text{ x } 4^{0.3}$

$$f_b^{0,7} = 2,472$$
 i.e. $f_{bmin} = {}^{0,7}\sqrt{(2,472)}$

 $f_{bmin} = 3,64 \text{ N/mm}^2 \text{ min.}$

Normalised compressive strength, f_b = compressive strength x δ x conditioning factor

Using a 215mm high by 140mm wide masonry unit, δ , the shape factor from BS EN 772-1, Table A.1 is 1,30 for the air dry condition compressive testing regime

Therefore masonry unit compressive strength required = $3,64 / (1,30 \times 1,0)$ = $2,8 \text{ N/mm}^2$

Choose for convenience a concrete block masonry unit with a compressive strength (non-normalised) of 2,9 N/mm², (represents a normalised compressive strength (f_b) of 3,77 N/mm² when masonry unit is conditioned for testing air dry).

Therefore actual f_k achieved = $f_k = Kf_b^{\alpha}f_m^{\beta} = 0.75 \times 3.77^{0.7} \times 4^{0.3} = 2.88 \text{ N/mm}^2$

$$f_d = \frac{f_k}{\gamma_m}$$

And actual wall vertical load capacity:

$$N_{Rd} = 0.76 \times 140 \times 2.88 / 2.3 = 133 \text{ kN/m run}$$

Wall will carry a design vertical load of 133 kN/m run (> 130 kN/m applied)

©John Roberts 2020